The impact of modern geographic information systems (GIS) on improving the energy efficiency of maritime transportation

Keywords: Geographic Information Systems, maritime transportation, energy efficiency, route optimization, shipping

Abstract

Background. Modern maritime transportation faces challenges related to the need for increased energy efficiency and reduced greenhouse gas emissions. These issues have become particularly relevant in the context of global environmental policies and the tightening of international ship energy efficiency standards (EEDI, EEOI, CII). One of the promising solutions is the use of geographic information systems (GIS), which enable vessel route optimization, reduce fuel consumption, and minimize environmental impact. However, the extent of their impact on improving maritime transport energy efficiency requires further research.

The objective of this study is to analyze the impact of GIS technologies on improving the energy efficiency of maritime transportation and to assess their effects on fuel consumption and carbon emissions.

Methods. The study examines key GIS technologies, including satellite monitoring, mapping, modeling, and data analysis, used for vessel route optimization. The methodological approach is based on experimental modeling, comparing three shipping scenarios: traditional routing, dynamic route optimization, and combined route and speed management using GIS. The analysis focuses on evaluating the impact of these approaches on fuel consumption, CO₂ emissions, and overall ship energy efficiency.

Results. The modeling results showed that the application of GIS can reduce fuel consumption by up to 20% and decrease CO₂ emissions by up to 21% compared to traditional navigation methods. Optimizing vessel routes and speeds based on GIS data contributes to lower operational costs and improved compliance with international environmental standards.

Conclusion. The obtained data confirm the significant potential of GIS in enhancing the energy efficiency of maritime transportation. The integration of these technologies into route planning and vessel operation management enables not only a reduction in fuel costs and carbon emissions but also an increase in the economic efficiency of maritime logistics. Further integration of GIS with artificial intelligence and real-time data processing systems may lead to even greater sustainability and efficiency in the shipping industry.

EDN: EDGSUM

Downloads

Download data is not yet available.

Author Biographies

Anna A. Ananeva, Russian State Hydrometeorological University

master’s degree

Maksim E. Stepanov, I. N. Ulianov Chuvash State University

master’s degree

Oleksandr A. Korostin

master’s degree, individual researcher

Maria S. Korneva, Kuban State University

bachelor’s degree

References

Список литературы

Маймакова, Л. В., Зайнеева, И. И., & Зималиева, А. Э. (2024). Современные тенденции развития транспортно-логистической инфраструктуры. Естественно-гуманитарные исследования, (5), 206–210.

Malikov, A. (2024). Digital transformation and its impact on the structure and efficiency of modern business. Annali d’Italia, (62), 112–115. https://doi.org/10.5281/zenodo.14558548

Ююкин, И. В. (2024). Картографирование изоповерхности дополнительных вторичных факторов методом сплайн-аппроксимации как условие повышения точности обсерваций e-Loran. Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова, 16(1), 37–54. https://doi.org/10.21821/2309-5180-2024-16-1-37-54

Kidassova, M. (2024). Enhancing business operational efficiency through supply chain optimization. Norwegian Journal of development of the International Science, (144), 37–39. https://doi.org/10.5281/zenodo.14169113

Andrei, N., et al. (2024). Transforming E-commerce logistics: sustainable practices through autonomous maritime and last-mile transportation solutions. Logistics, 8(3), 71. https://doi.org/10.3390/logistics8030071

Москаленко, В. М., Москаленко, М. А., & Луговец, А. А. (2024). Транспортная энергоэффективность и экономические принципы организации морского судоходства. Вестник Астраханского государственного технического университета. Серия: Морская техника и технология, (2), 89–95. https://doi.org/10.24143/2073-1574-2024-2-89-95

Yaman, C. (2024). A Review on the Process of Greenhouse Gas Inventory Preparation and Proposed Mitigation Measures for Reducing Carbon Footprint. Gases, 4(1), 18–40. https://doi.org/10.3390/gases4010002

Живлюк, Г. Е., & Петров, А. П. (2024). Энергоэффективность судов современного коммерческого флота: инструменты регулирования и методы достижения. Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова, 16(2), 301–317. https://doi.org/10.21821/2309-5180-2024-16-2-301-317

Bayraktar, M., et al. (2023). A scenario-based assessment of the Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) regulations. Ocean Engineering, 278, 114295. https://doi.org/10.1016/j.oceaneng.2023.114295

Hu, X., et al. (2023). GIS-data-driven efficient and safe path planning for autonomous ships in maritime transportation. Electronics, 12(10), 2206. https://doi.org/10.3390/electronics12102206

Москаленко, В. М. (2021). Влияние скорости перехода на энергоэффективность морского судна. General Question of World Science, 15(10), 80–84. https://doi.org/10.18411/gq-15-10-2021-14

Wang, K., et al. (2018). Dynamic optimization of ship energy efficiency considering time-varying environmental factors. Transportation Research Part D: Transport and Environment, 62, 685–698. https://doi.org/10.1016/j.trd.2018.04.005

Габдулхаков, А. А., & Завалишин, Д. С. (2021). Динамическая оптимизация сложных маршрутов в транспортной логистике. Современные наукоемкие технологии, (5), 33–38. https://doi.org/10.17513/snt.38654

Selimov, A. (2024). Comparative analysis of legal regulation of international transactions in the USA and the EU. International Journal of Scientific Research and Engineering Development, 7(6), 480–483.

References

Maiakovskaya, L. V., Zaineeva, I. I., & Zimalieva, A. E. (2024). Current trends in the development of transport and logistics infrastructure. Natural and Humanitarian Studies, (5), 206–210.

Malikov, A. (2024). Digital transformation and its impact on the structure and efficiency of modern business. Annali d’Italia, (62), 112–115. https://doi.org/10.5281/zenodo.14558548

Iuyukin, I. V. (2024). Mapping additional secondary surface isolines via spline approximation as a condition for increasing accuracy of e-Loran observations. Admiral S. O. Makarov State Maritime and River Academy Bulletin, 16(1), 37–54. https://doi.org/10.21821/2309-5180-2024-16-1-37-54

Kidassova, M. (2024). Enhancing business operational efficiency through supply chain optimization. Norwegian Journal of Development of the International Science, (144), 37–39. https://doi.org/10.5281/zenodo.14169113

Andrei, N., et al. (2024). Transforming e-commerce logistics: sustainable practices through autonomous maritime and last-mile transportation solutions. Logistics, 8(3), 71. https://doi.org/10.3390/logistics8030071

Moskalenko, V. M., Moskalenko, M. A., & Lugovets, A. A. (2024). Transport energy efficiency and economic principles of marine shipping organization. Bulletin of Astrakhan State Technical University. Series: Marine Engineering and Technology, (2), 89–95. https://doi.org/10.24143/2073-1574-2024-2-89-95

Yaman, C. (2024). A review on the process of greenhouse gas inventory preparation and proposed mitigation measures for reducing carbon footprint. Gases, 4(1), 18–40. https://doi.org/10.3390/gases4010002

Zhivlyuk, G. E., & Petrov, A. P. (2024). Energy efficiency of vessels in modern commercial fleet: regulatory tools and achievement methods. Admiral S. O. Makarov State Maritime and River Academy Bulletin, 16(2), 301–317. https://doi.org/10.21821/2309-5180-2024-16-2-301-317

Bayraktar, M., et al. (2023). Scenario-based assessment of the Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) regulations. Ocean Engineering, 278, 114295. https://doi.org/10.1016/j.oceaneng.2023.114295 EDN: GBRSOI

Hu, X., et al. (2023). GIS-data-driven efficient and safe path planning for autonomous ships in maritime transportation. Electronics, 12(10), 2206. https://doi.org/10.3390/electronics12102206

Moskalenko, V. M. (2021). Effect of transition speed on vessel energy efficiency. General Questions of World Science, 15(10), 80–84. https://doi.org/10.18411/gq-15-10-2021-14

Wang, K., et al. (2018). Dynamic optimization of ship energy efficiency considering time-varying environmental factors. Transportation Research Part D: Transport and Environment, 62, 685–698. https://doi.org/10.1016/j.trd.2018.04.005

Gabdulkhakov, A. A., & Zavalishin, D. S. (2021). Dynamic optimization of complex routes in transport logistics. Advanced Technologies Today, (5), 33–38. https://doi.org/10.17513/snt.38654

Selimov, A. (2024). Comparative analysis of legal regulation of international transactions in the USA and the EU. International Journal of Scientific Research and Engineering Development, 7(6), 480–483.


Published
2025-03-31
How to Cite
Ananeva, A., Stepanov, M., Korostin, O., & Korneva, M. (2025). The impact of modern geographic information systems (GIS) on improving the energy efficiency of maritime transportation. Transportation and Information Technologies in Russia, 15(1), 91-110. https://doi.org/10.12731/2227-930X-2025-15-1-350
Section
Original Articles